Abstract

A solar receiver for the continuous reduction of redox particles under vacuum conditions has been developed previously as part of a system to produce hydrogen from solar energy. Here, we report about a joint effort of Sandia and DLR to improve the receivers design and to demonstrate a system of two receivers with different vacuum pressures at DLR’s solar simulator Synlight. We focus on the design and experimental investigation of three components: the novel beam down mirror, the novel secondary concentrator and the improved version of the particle conveying plate in the receiver. Irradiation test results and heat transfer analyses of the beam-down mirror and the secondary concentrator are being presented. The motion of the conveyor plate was improved by a MATLAB model, which predicts the transport speed of the particles on the conveyor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call