Abstract

Decarbonizing the energy sector becomes a key topic to solving man-made climate change. For achieving indoor thermal comfort conditions, conventional heating, ventilating, and air-conditioning systems consume so much energy in both residential and public buildings. In this paper, a novel solar-assisted absorption-compression system for both heating and cooling is proposed to utilize solar thermal energy throughout the year for the heating/cooling supply. The experimental prototype was built and operational modes including solar-assisted heating/cooling mode and vapor compression individual heating/cooling mode. The performance enhanced by assisted heat input of the proposed system is evaluated by comparing it with air-source heat pumps operated under the same ambient conditions. Performance indices consisting of COPele increment, power-saving ratio (PSR) and energy-saving ratio (ESR) are presented. The results indicate that the combination of the absorption heat pump subsystem and the vapor compression subsystem lowers the heat-driven temperature to 60 °C and thus makes higher solar collection efficiency possible. The maximum of the COPele increment and the PSR under solar-assisted heating mode are achieved at conditions with 80 °C hot water temperature, of 45.8% and 31.4%, respectively, and the corresponding value for solar-assisted cooling mode are 18.9% and 16.0%. The speed of compressor as well as fan frequency of terminal has a greater influence on heating performance that on cooling performance due to the different coupling mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.