Abstract

Steam power plants are the largest industrial users for water. New restrictions for using water in cooling systems have led to a search for alternative cooling methods. This paper presents an experimental study of using a vapor compression refrigeration system (VCRS) for cooling a steam power plant condenser. The refrigeration system uses commercially available and environmental friendly R-410A to cool an intermediate chilled water loop which is used as a coolant for the steam condenser. Working under lower condenser pressure with higher coolant flow rates reduces the power required for the refrigeration system and rises the coefficient of performance (COP) and condensation rate. Based on the present experimental data an adjustment to a known empirical correlation for the Nusselt number in a shell and tube steam condenser is presented. The results show that decreasing the inlet coolant temperature increases condensation rate, heat rejection, COP, overall heat transfer coefficient, and R-410A to condensate mass flow ratio. Moreover, the increase in the rate of condensation and COP is most pronounced at lower steam condenser operating pressure and higher water coolant mass flow rate. The results reveal that using a VCRS is capable of providing a steam condenser with a more constant and lower coolant temperature than traditional wet and dry cooling technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.