Abstract

A design study of a novel proton exchange membrane fuel cell (PEMFC) is presented in this article. The PEMFC is particularly suited to the automotive and small-scale stationary industries; however, at this stage it fails to be a viable commercial alternative to the internal combustion engine. This is mainly due to large material and manufacturing costs associated with components used in the fuel cell. A new design approach that removes the bipolar plate from the PEMFC stack is investigated. A single PEMFC, which features the design changes that can be integrated in the main stack, has been designed, manufactured, assembled, and tested to obtain performance characteristics for a range of operating conditions. Two different flow configurations for the reactants, that is, dead-end gas flow and through-mode flow, were tested. The new design achieved performance comparable to that with conventional designs reported in literature. The experimental results confirmed that bipolar plate can be removed and it is possible to bring down the costs and weight of the stack drastically. It is envisaged that the new design will allow the PEMFC to potentially inject into the current market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.