Abstract

The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t − τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) − P(θi) · (aR(ti) + bR(ti − τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7–1.3 mm and 0.8–1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1–7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been experimentally investigated for arc and static field delivery. The average beam-target error was 1 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call