Abstract
This work is an experimental study of the motion and deformation of a bioartificial capsule flowing in a tube of 4 mm diameter. The capsules, initially designed for medical applications, are droplets of salt water surrounded by a thin polymeric membrane. They are immersed in a very viscous Newtonian silicone oil that flows through a tube in the Stokes regime. The properties of the capsules were carefully determined. Two previous experimental papers were devoted to their characterization by osmotic swelling and compression between two plates. The present work also provides a series of tests that allows an accurate definition of the experimental model under investigation. The capsules are buoyant and initially quasi-spherical. Nevertheless, buoyancy and small departures from sphericity are shown to have no significant effects, provided the flowing velocity is large enough for the viscous stress to become predominant. The capsules are also initially slightly over-inflated, but there is no mass transfer through the membrane during the present experiments. Their volume therefore remains constant. The membrane can be described as an elastic two-dimensional material, the elastic moduli of which are independent of the deformation. Far from the tube ends, the capsule reaches a steady state that depends on two parameters: the capillary number, . Comparisons with available numerical simulations show that the results are strongly dependent on the properties of the capsules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.