Abstract

The friction coefficient is one of the key parameters in the tribological performance of mechanical systems. In the condition of light normal load and low rotation speed, the friction coefficients of ball-on-disc with rough surface in dry sliding contact are experimentally investigated. Friction tests are carried out under normal load 2–9 N, rotation speed 20–48 rpm at room temperature, and surface roughness 0.245–1.010 μm produced by grinding, milling, and turning. Results show that the friction coefficient increases first and then becomes stable, in which the running-in and steady-state periods are included. With the growth of normal load and rotation speed, or the decline of surface roughness, the duration and fluctuation of the running-in period verge to reduce. The whole rising slope of the friction coefficient in the running-in period goes up more quickly with the increment of rotation speed, and it ascends more slowly as normal load enlarges. In terms of the steady-state period, the deviation of the friction coefficient shows a dwindling trend when normal load or rotation speed grows, or surface roughness descends. As normal load or rotation speed rises, the value of the friction coefficient rises first and then drops. Additionally, the mean value of the friction coefficient in steady-state is approximately independent of surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.