Abstract

This paper presents the results of an experimental study aiming to investigate the behavior of steel connections that combine pretensioned high-strength bolts and longitudinal fillet welds on a common faying surface. A total of 75 double-shear tension splices were tested under direct tension loading to quantify the effect of various connection variables on the load-deformation behavior of the connection. These variables include the (1) bolt pattern (2×2 and 2×3), (2) bolt size (3/4 in. and 1 in.), (3) bolt grade (ASTM F3125 Grade A325, A490, and F1852), (4) bolt pretensioning method (turn-of-nut and tension control bolts), (5) faying surface class (Class A and B), and (6) weld/bolt strength ratio. The variation in the connection characteristics covered a wide range of weld/bolt strength ratios from 0.50 to 2.00. The bolts were installed in oversized holes, and the specimens were assembled in a negative bearing condition to allow for a maximum slip distance. The load-deformation behavior of the combination connections was recorded and compared to that of the bolted- and welded-only control specimens. In all tests, the addition of welds increased the capacity of the connection. The investigation shows that the capacity of the combination connection with pretensioned high-strength bolts and longitudinal fillet welds can be computed by adding the capacities of the individual connecting elements while considering the strain compatibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.