Abstract

This research presents an experimental investigation into the mechanical, thermal, and shape memory behavior of a thermos-responsive polyurethane (PU) reinforced with 0–1.0 wt % of MXene (Ti3C2Tx) nanofiller. The PU/MXene nanocomposites were fabricated using sonication and injection molding route. The 0.5 wt % PU/MXene nanocomposite showed the optimum mechanical properties i.e. tensile modulus, tensile strength, and hardness value, which are improved by 22, 281, and 19 %, respectively, compared to pure PU. The improvement is observed in melting temperature (Tm), the heat of melting (hm), crystallization temperature (Tc), and the heat of crystallization (hc) results. The percentage of crystallinity revealed enhancements of 6 %, 18 %, 24 %, and 34 % for 0.1, 0.2, 0.3, and 0.5 wt % PU/MXene samples respectively compared to pure PU. The findings from the shape recovery experiments demonstrated that the inclusion of MXene has no impact on both the shape fixity and shape recovery performance. The PU/MXene nanocomposite with improved mechanical and thermal properties can find potential applications in robotics actuators, medical devices, sensors, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.