Abstract

To fulfill the objective of reducing pollution and carbon emission while advancing the development of high-performance structural systems aligned with green building principles, an innovative demountable dry connection fully precast frame structure system was introduced in this paper. The structure is easy to assemble, can significantly enhance construction efficiency, and facilitates the upgrading and earthquake-damaged replacement of components during service. To comprehensively investigate the dynamic characteristics of this novel precast frame structure, a half-scale specimen structure was manufactured and tested on a shaking table. The seismic performance of the structure was evaluated by collecting and analyzing the data on acceleration, displacement, and strain, as well as observing the deformation and cracking of the structure. The results show that the structure performs well as designed with confined damage, and can achieve the performance target of withstanding minor earthquakes without damage and surviving severe earthquakes without collapsing. After experiencing strong earthquakes, the damage was concentrated on the concrete beams, and the damaged components were easy to demount and replace, which could extend the service life of the structure, ensure the sustainability of the structural seismic resistance, and present an effective solution for achieving environmentally conscious, green, and low-carbon construction practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call