Abstract

Structural fire-protective clothing must be effective at minimizing the thermal effects of fire. However, water remaining on the outer shell might play an important role in conducting heat transfer, which causes skin burns in a firefighter when he douses a fire with water through a hose. Therefore, this research demonstrated the difference in the heat transfer and humidity created by the remaining water or lack of water on the outer shell under a condition in which the temperature (45 ± 1℃) of the external environment was higher than that of the skin. Two types of multilayered systems, which simulated real fire-protective clothing (outer shell, moisture barrier, thermal liner) were tested by using a human–clothing–environment (HCE) simulator. The experimental results verified that water on the outer shell increased the microclimate temperature in the structural fire-protective clothing. In particular, we assume that air permeability in the outer shell can be an important factor to control heat and mass transfer within the microclimate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.