Abstract

Abstract Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions, impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e., vaned diffusers or inlet guide vanes. In a previous study conducted on two full compression units of the original equipment manufacturer (OEM), the authors identified, characterized, and quantified resonant blade vibration caused by the interaction of the impeller blades with rotating stall cells during severe off-design conditions. This caused significant dynamic stress in the blades. In a follow-up study, this phenomenon was reproduced successfully experimentally under representative off-design conditions in a downscaled test rig and numerically with unsteady computational fluid dynamics (CFD) and structural mechanical finite element method (FEM) analysis. The gained knowledge was translated into a new diffuser design philosophy, based on sectorwise circumferential variation of the leading edge angle. This paper presents the patented philosophy, which is experimentally verified on the same test rig configuration in terms of flow path geometry and measurement equipment that was used in the mentioned prior study to assess resonant blade interaction. The results confirm the design aims: rotating stall onset was delayed without affecting the aerodynamic performance of the stage. Resonant blade interaction with rotating stall observed in the baseline diffuser could not be avoided with the two new diffuser designs. However, with the two new diffusers, the induced mechanical stresses in the impeller and the excitability were reduced by up to 12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call