Abstract

This study includes experimental and three-dimensional numerical analysis of conjugate steady-state laminar forced ferroconvection of Newtonian incompressible ferrofluid through a horizontal circular pipe under constant heat flux and in presence of transverse magnetic field. The magnetic field was applied by two fixed parallel magnet bars at the beginning of the tube. To validate the thermohydrodynamic characteristics obtained by numerical results, appropriate experimental setup with accurate instrumentations was conducted. Based on presence and absence of porous media and solid rod inside of pipe, six conditions were compared for quantifying the heat transfer enhancement and effectiveness. Governing equations were discretized by finite volume method (FVM) and solved using the semi-implicit method for pressure linked equations (SIMPLE) algorithm and computational fluid dynamic (CFD) techniques. It was found that magnetic field, porous media, and solid rod increase heat transfer and pressure loss in the pipe such that solid rod has the best effect on heat transfer and worst effect on effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.