Abstract
Recuperative type of heat exchanger (H-E) based miniature Joule-Thomson (J-T) cooler operated in the steady-state condition is employed extensively in applications towards infrared detectors cooling, thermal imaging cameras, and homing guidance devices in a wide variety of defence projectile systems. In this study, a theoretical thermal design of recuperative H-E for determining a viable geometry using iterative methodology is discussed. A steady-state numerical analysis for the developed geometrical model of the H-E is also reported, along with the experimental studies for typical operating conditions. A custom numerical code using the Runge-Kutta method has been developed in MATLAB, and the results from the code compared with predictions of COMSOL multi-physics are in good agreement. Further, results have been validated proving the efficacy of the theoretical model and custom numerical code developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.