Abstract
Zn–Cu–Sr alloys play a crucial role in the development of biodegradable implant materials based on zinc. The current study aimed to investigate the phase equilibria of the Zn–Cu–Sr ternary system in the Cu–Zn-rich region, through experimental analysis. For this purpose, fifteen and fourteen samples were respectively prepared and equilibrated at 350 and 400 °C, to determine the isothermal sections. The equilibrated alloys were then subjected to various analytical techniques such as scanning electron microscopy (SEM) equipped with energy dispersive spectrometry analysis (EDS), electron probe microanalysis (EPMA), and powder X-ray diffraction analysis (XRD). The analysis revealed the presence of five three-phase equilibria and ten two-phase equilibria in the two isothermal sections. Differential scanning calorimetry (DSC) was used to investigate the phase transformation temperature with constant values of 8 at. % Sr and 30 at. % Cu. The obtained experimental results were used to perform a thermodynamic assessment of the Zn–Cu–Sr system especial in Zn-rich region using the calculation of phase diagrams (CALPHAD) method. The modified quasi-chemical model (MQM) was used to model the liquid solution, while the compound energy formalism (CEF) was used to represent Gibbs free energies of the solid phases. The present obtained thermodynamic parameters were found to accurately reproduce the experimentally measured phase relationships in the Zn–Cu–Sr ternary system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.