Abstract

Stress conditions are critical in deep hard rock mining and significantly influence hard rock cuttability. The peak cutting force (PCF), cutting work (CW), and specific energy (SE) can reflect rock cuttability and determine the feasibility and saving of mechanized mining to some extent. In this paper, the influence of uniaxial lateral stress on rock cuttability was investigated by an indentation experiment on cuboid rock using a conical pick, and a theoretical model was proposed to analyze the PCF and associated factors. The PCF, CW, and SE were used as indices to measure hard rock cuttability. The regression analyses show that rock cuttability presents as decreasing followed by increasing as uniaxial lateral stresses increases. The theoretical model was established by simplifying rock fragments into three-dimensional ellipse cones, and a formula was derived based on the elastic fracture mechanics theory. The error between the calculated and experimental values is 3.8%, which confirms the accuracy of the prediction formula. Finally, rock fragmentation by using conical picks was successfully applied on the field mining stope by inducing high geostresses to promote adjustments in stress and improve ore-rock cuttability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.