Abstract

In the current era, two types of the composite, namely polymer-based composites and metal matrix composite materials are used in the industrial application, and the demand for an increase in its production is rapidly growing. But these composite materials are not so widely acceptable in the industries due to its non-machinability nature by conventional methods. Various reasons like the incorporation of defects, high strength, and hardness of the composite make the production of intricate shapes not easily achievable by traditional methods which lead to the development of new non-conventional machining methods. Laser machining method is one of the non-conventional methods which are becoming popular for cutting of composite materials due to its advantages of fast cutting speed and no contact with the workpiece. In this experimental work, an erbium-doped fiber laser is used to study the machinability of carbon fiber reinforced polymer composite and effect of various machining parameters are observed on the performance responses like heat affected zone and surface roughness. It was found that composite was easily machinable with some surface defects which were detected by SEM images. The decrease in power with an increase in scan speed and standoff distance reduces surface roughness and heat affected zone in the material

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.