Abstract

Exterior reinforced concrete (RC) shear keys are widely used to protect bridge superstructures from lateral unseating and overturning during major earthquakes. The peak capacity and envelope curve of the shear keys are essential parameters for evaluating their performance. This study was conducted as a follow-up to the experimental research by the authors, which aimed to investigate the seismic properties of shear keys. In this subsequent research, RC shear keys were numerically simulated using the ABAQUS software to reveal the damage evolution and strain development. The modeling results were compared with test observations, where three typical failure modes were considered including diagonal, horizontal, and sliding failures. The results are in good agreement with the experiments in terms of the envelope curves for the diagonal and horizontal failure shear keys, but they underestimate the residual strength of the sliding failure shear key. The strain distribution and concrete damage are in good accord with the field observations. Through comparison with experimental tests, this study developed three analytical models to evaluate the performance of each failure mode, which yielded better predictions than the existing methods. Ultimately, these findings enhance the understanding of the shear key behavior and its effectiveness in protecting bridges against seismic hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call