Abstract
Contrary to the conventional wisdom that there exists only one unique liquid state for any material, there are growing experimental and numerical evidence for the existence of more than two liquid states in a single component substance. The transition between them is called liquid-liquid transition (LLT). LLT has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. However, the physical nature of the transition has remained elusive. Particularly for water, the possible existence of LLT has special implications not only on its fundamental understanding, but also on a link of various thermodynamic and transport anomalies with critical anomaly associated with LLT. In this paper, we show experimental indications for a LLT in aqueous solutions of glycerol. We demonstrated that LLT proceeds through two types of kinetics characteristic of the first order transition: nucleation-growth (NG) and spinodal-decomposition (SD) type transformation. We also reveal that local tetrahedral ordering of water molecules play a key role, which is suggestive of the presence of LLT in pure water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.