Abstract

Owing to the high variability of operating conditions and the complexity of dynamic phenomena occurring within air conditioning cycles, the realistic performance estimation of these systems remains an open question in this field. This paper demonstrates the applicability of a cost-effective estimation method based on an artificial neural network exclusively using four refrigerant temperatures as the network input. The experimental datasets are collected from a reference experimental facility. The system is operated with variable cooling load, outdoor temperature, and indoor temperature settings, as representative of the actual operation. The artificial neural network structure was optimized by considering the effect of previous time step inputs, number of neurons, sampling time, and number of training data. The results reveal that the developed model can successfully estimate the cooling capacity of an air conditioning system during on–off, continuous unsteady, and steady operation, using four temperature inputs with relative averaged error below 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.