Abstract
Game theory is central to the understanding of competitive interactions arising in many fields, from the social and physical sciences to economics. Recently, as the definition of information is generalized to include entangled quantum systems, quantum game theory has emerged as a framework for understanding the competitive flow of quantum information. Up till now, only two- and three-player quantum games have been demonstrated with restricted strategy sets. Here, we report the first experiment that implements a four-player quantum minority game over tunable four-partite entangled states encoded in the polarization of single photons. Experimental application of appropriate player strategies gives equilibrium payoff values well above those achievable in the classical game. These results are in excellent quantitative agreement with our theoretical analysis of the symmetric Pareto optimal strategies. Our results demonstrate for the first time how nontrivial equilibria can arise in a competitive situation involving quantum agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.