Abstract

SUMMARYThis paper presents an experimental implementation and verification of multi‐degrees‐of‐freedom effective force testing (MDOF‐EFT). An experimental setup that consists of a two‐degrees‐of‐freedom structural system and two hydraulic actuators at the Johns Hopkins University was utilized in this study. First, experimental system identification was performed to develop compatible analytical models for the multi‐input and multi‐output systems. Dynamics of the control plant, that is, the valve‐to‐force relations, were modeled with a rational polynomial transfer function matrix and delay components. By using the analytical model, a centralized decoupling loop‐shaping force feedback controller was designed such that the forces are uncoupled and the loop transfer functions have desirable dynamic characteristics in the frequency domain. Then, a series of harmonic force and earthquake simulation tests were performed to assess capabilities and limitations of MDOF‐EFT. Experimental results showed that the dynamic forces in the two actuators were accurately controlled to provide tracking while the system was stable and robust for the entire period of the experiment. Furthermore, earthquake simulation tests with increased levels of the reference forces demonstrated the feasibility of MDOF‐EFT with highly nonlinear test structures. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call