Abstract

Since the wheel interaction with a certain terrain cases (asphalt, concrete) are known and well described in case of straightforward motion and non-slip and slip cornering conditions, the skid-steered wheeled vehicles case needs to be analyzed. Side-slip for various attack angle has to be investigated. The main area of interest of research that is shown in the project is energy demand calculation of skid-steered wheeled vehicles in various terrain conditions. Certain cases of all-electric vehicles with individual electric motors per wheel demand a precise assessment of longitudinal and lateral forces in order to perform the fully controlled turn. Experimental stand designed and developed by authors allows to test the wheel-surface interaction for various terrain conditions and different driving directions. Test data were acquired for dry and wet sand and granite pavement. Traction and side forces were acquired and used to identify the wheel-soil interaction model parameters for unpropelled wheel. Results in a form of time series including longitudinal and lateral forces show the relation between attack angle, load and surface conditions in terms of stick and slip phenomenon that is essential for skid-steering dynamics calculations. Measurement results are then used for calculation of longitudinal and lateral forces coefficients as a function of attack angle and vertical load. Test were performed in natural environment, thus they are affected by changeable conditions. Multiple runs are used for elimination of that influence. Described experiments are a part of the project that includes results generalization using test validated FEM model. Described work is not intended to develop new ground-tire interaction models, it is focused on numerically efficient traction effort calculation method for various conditions including passive mode—unpropelled wheel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.