Abstract

Magnetic skyrmions are key candidates for novel memory, logic, and neuromorphic computing. An essential property is their topological protection caused by the whirling spin texture as described by a robust integer winding number. However, the realization on an atomic lattice leaves a loophole for switching the winding number via concerted rotation of individual spins. Hence, understanding the unwinding microscopically is key to enhance skyrmion stability. Here, we use spin polarized scanning tunneling microscopy to probe skyrmion annihilation by individual hot electrons and obtain maps of the transition rate on the nanometer scale. By applying an in-plane magnetic field, we tune the collapse rate by up to four orders of magnitude. In comparison with first-principles based atomistic spin simulations, the experiments demonstrate a radial symmetric collapse at zero in-plane magnetic field and a transition to the recently predicted chimera collapse at finite in-plane field. Our work opens the route to design criteria for skyrmion switches and improved skyrmion stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.