Abstract

Abstract Diabatic performance modeling is a prerequisite for engine condition monitoring based on nonsteady-state data points (e.g., Putz et al. 2017, “Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots,” ASME J. Eng. Gas Turbines Power, 139(11), p. 111201.). The importance of diabatic effects increases with decreasing engine size. Steady-state diabatic modeling of turbomachinery components is presented using nondimensional parameters derived from a dimensional analysis. The resulting heat transfer maps are approximated using the analytic solution for a pipe. Experimental identification of the maps requires the measurement of casing and gas path temperatures. This approach is demonstrated successfully using a small turboshaft engine as a test vehicle. A limited amount of measurements was needed to generate a steady-state heat transfer map which is valid for a wide range of operating points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.