Abstract

AbstractThis contribution presents modal testing of a 2‐MW wind turbine on a 100‐m tubular tower with a 93‐m rotor developed by W2E Wind to Energy GmbH. This research is part of the DYNAWIND project of the University of Rostock and W2E. Beside classical modal analysis schemes, this contribution mainly focusses on the application of operational modal analysis techniques to a wind turbine. Specific problems are addressed, and hints for modal testing on wind turbines are given. Furthermore, an effective measurement setup is proposed for identification of the modal parameters of a wind turbine. The measurement campaign is divided in two parts. First, a measurement campaign using 8 sensor positions on a rotor blade was done while the rotor is lying on ground. Second, a detailed measurement campaign was done on the entire wind turbine with the rotor locked in Y position using 61 sensor positions on the tower, the mainframe, the gearbox, the generator, and the low‐voltage unit. While the rotor blade was tested by classical and operational modal analysis techniques, the entire wind turbine was tested by operational modal analysis techniques only. The mode shapes and eigenfrequencies of the wind turbine identified within the measurement campaigns are within the expected range of the design values of the wind turbine. But in contrast, the damping ratios differ strongly from those given in guidelines and literature. Furthermore, a strong influence of aerodynamic damping compared to structural damping is observed for the first tower mode even for a parked wind turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call