Abstract
We experimentally investigate and characterize high order Lamb wave modes in a dry human skull. Specifically, we show that the diploë supports distinct wave modes in the sub-1.0 MHz frequency regime, and we employ these modes for the estimation of equivalent mechanical properties of cortical and trabecular bones. These modes are efficiently generated in a parietal region by direct contact excitation with a wedge beam transducer, and are recorded via infrared laser vibrometry. Frequency/wavenumber data are estimated using a matrix pencil method applied to wavefield measurements recorded on the outer cortical surface. The semi-analytical finite element model of an equivalent three-layered plate provides the platform for the identification of wave modes based on their through-the-thickness profiles, and supports the estimation of equivalent mechanical properties in conjunction with an optimization algorithm developed for this purpose. The results presented herein illustrate how high order Lamb waves can be used to gain understanding of the wave properties of a human skull and to estimate the orthotropic and equivalent isotropic mechanical properties of cortical and trabecular bones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.