Abstract

Recently, hyperhomocysteinemia (HHCY) has been suggested as a new risk factor for osteoporosis. This study investigated if HHCY is a causal osteoporotic factor in vivo. We used 3 groups of rats: a control group (n = 20), a moderate HHCY group (induced by a 2.4% methionine-enriched diet, n = 10), and an intermediate HHCY group (induced by a 2% homocystine-enriched diet, n = 10). We measured bone fragility [maximum force of an axial compression test (F(max))], bone area as percentage of total area (BAr/TAr, histomorphometry), and biochemical bone turnover markers [osteocalcin (OC) and collagen I C-terminal crosslaps (CTx)]. Compared with controls, 3 months of moderate or intermediate HHCY increased mean (SD) bone fragility at the femoral neck by 18% (6%) in methionine-fed (P = 0.001) and 36% (13%) in homocystine-fed rats (P <0.001). Mean (SD) BAr/TAr at the distal femur in methionine and homocystine groups was decreased by 45% (21%; P = 0.001) and 93% (9%; P = 0.001), respectively. At the femoral neck, BAr/TAr was decreased by 19% (11%; P <0.001) and 55% (19%; P <0.001). At the lumbar spine, the reduction of BAr/TAr was 17% (23%; P = 0.099) and 44% (19%; P <0.001). Plasma OC (bone formation marker) was decreased by 23% (20%; P = 0.006) and 34% (21%; P <0.001). Plasma CTx (bone resorption marker) did not differ between groups. Bone quality is consistently decreased in the presence of increased circulating homocysteine. The results provide evidence that HHCY is a causal osteoporotic factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.