Abstract
In this study, hydrodynamic parameters such as minimum liquid phase fluidization velocity semifluidization velocity pressure drop and height of top packed bed formation of a co-current gas-liquid -solid multiphase semifluidized bed were studied using the liquid as the continuous phase and air as the dispersed phase. Air, water, and acrylic beads of various sizes were used to represent the gas, liquid, and solid phases, respectively. The experiments were conducted in a vertical perspex column. The liquid and gas was co-currently fed into the column with varying flow rate. The column has three sections comprising of gas-liquid release section, main section, and gas-liquid distributor section, respectively. The significant outcomes of this study are reduced minimum fluidization velocity ranging from 0.004 to 0.01 m/s and minimum semifluidization velocity of 0.032–0.006 m/s compared to reported high values. Maximum bed pressure drop was found to be 5.6 kPa. Empirical mathematical correlations that represent the hydrodynamic and bed characteristics were developed from the experimental data which are also a new aspect of this study. Model results fitted well to the experimental values and the values obtained are quite useful for the various industrial application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.