Abstract
Partially spatially coherent qubits are more immune to turbulent atmospheric conditions than coherent qubits, which makes them excellent candidates for free-space quantum communication. In this article, we report the generation of partially spatially coherent qubits in a spontaneous parametric down-conversion (SPDC) process using a Gaussian Schell model (GSM) pump beam. For this non-linear process, we demonstrate experimentally for the first time, the transfer of spatial coherence features of the pump (classical) to the biphotons (quantum) field. Also, the spatial profiles of partially coherent qubits generated in type-I and type-II non-collinear SPDC process are experimentally observed and multi-mode nature of partially coherent photons (qubit) is ascertained. These investigations pave the way toward the efficient generation of partially spatially coherent qubits with a tunable degree of spatial coherence, which lead to wide range of applications in frontier areas such as quantum cryptography, teleportation, imaging, and lithography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.