Abstract

The experimental foundations of quantum theory are presented in some detail in this chapter: on the one hand, the investigation of black-body radiation, which helps in developing an interdisciplinary view of physics, besides having historical interest; on the other hand, the energy and linear momentum of photons, atomic spectra, discrete energy levels, wave-like properties of electrons, interference phenomena and uncertainty relations. Black-body radiation Black-body radiation is not just a topic of historical interest. From a pedagogical point of view, it helps in developing an interdisciplinary view of physics, since it involves, among the other, branches of physics such as electrodynamics and thermodynamics, as well as a new constant of nature, the Planck constant, which is peculiar to quantum theory and quantum statistics. Moreover, looking at modern developments, the radiation that pervades the whole universe (Gamow 1946, Penzias and Wilson 1965, Smoot et al . 1992, Spergel et al . 2003) is a black-body radiation, and the expected emission of particles from black holes (space–time regions where gravity is so strong that no light ray can escape to infinity, and all nearby matter gets eaten up) is also (approximately) a black-body radiation (Hawking 1974, 1975). In this section, relying in part on Born (1969), we are aiming to derive the law of heat radiation, following Planck's method. We think of a box for which the walls are heated to a definite temperature T .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call