Abstract

Jet A and JP-8 are kerosene fuels used in aviation and consist of complex mixtures of higher order hydrocarbons, including alkanes, cycloalkanes, and aromatic molecules. The objectives of the current work are to develop a surrogate mixture to represent JP-8 fuels and to discuss a general detailed chemical kinetic model for jet fuels, which is suitable for future reduction. Asurrogate blend of six pure hydrocarbons is found to adequately simulate the distillation and compositional characteristics of a practical JP-8. A hierarchically constructed kinetic model already available for the oxidation of alkanes and simple aromatic molecules (benzene, toluene, ethylbenzene, xylene, etc.) is extended to include methylcyclohexane and tetralin as new reference fuel components. The kinetic model is validated through comparisons with experimental data for the pure components and it is also used to verify and predict the structures of laminar premixed flames of different pure components as well as conventional kerosene fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.