Abstract

Somatosensory and auditory evoked cortical potentials (SEP's and AEP's), regional cerebral blood flow, regional brain water content, and alteration of the blood-brain barrier were investigated in 3 cortical areas during permanent and 1- and 2-hour transient occlusion of the left middle cerebral artery and after restoration of blood flow in cats. During occlusion, blood flow in the auditory cortex was severely suppressed. In the fore limb projection area of the somatosensory cortex, blood flow was moderately reduced while it was nearly unaffected in the hind limb projection area. Despite different degrees of ischemia in the 3 cortical areas, all evoked responses were completely abolished within 10 minutes after occlusion. During permanent occlusion, the pattern of blood flow reduction persisted, and all evoked potentials stayed abolished. Recirculation after occlusion restored blood flow rapidly. AEP's recovered poorly after both 1 and 2 hours of ischemia. SEP's regained normal amplitudes soon after recirculation in the group with 1-hour occlusion. After 2 hours of ischemia, the recovery of SEP's was variable but better than that of the AEP's. Remarkable water accumulation was observed in the auditory cortex of all 3 groups and was accompanied in the 2-hour ischemia group by a disruption of the blood-brain barrier. In the 2-hour group, water accumulation was also found in the subcortical white matter radiation, whereas significant changes in regional water content were not observed in the somatosensory areas. The present study indicates that abolition of SEP's during middle cerebral artery occlusion in cats is caused by lesions in the afferent pathway leading to cortical deafferentation rather than by cortical ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call