Abstract

CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors and CFB biomass gasifiers in particular. It has been found, for instance, that char gasification reactions and reform reactions of lower hydrocarbons do not proceed in an atmospheric CFB. Moreover, it appears that the axial and radial mixing of gas and solids is not ideal and that the coupling between the prevailing solids circulation rate, the gas velocity (profile), and the solids hold-up does not provide optimal reactor conditions. As a consequence, problems are observed in practice, such as insufficient thermal efficiency and an excessive concentration of contaminants (e.g., tars) in the product gas of CFB gasifiers. A two-dimensional engineering reactor model has been developed, partially on the basis of the results obtained from measurements with the pilot plant and the cold-flow model. The predictions of this model are in good agreement with the observed overall performance of the plant, as well as the measured axial and radial gas concentration profiles inside the riser. A novel multistage fluidized bed reactor concept has been tested (at laboratory and pilot scale) to investigate whether the problems encountered in conventional CFB gasifiers could be resolved. In this novel reactor, a separate char combustion zone is created that results in a significant increase of the thermal efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.