Abstract
We experimentally demonstrate an alternative method for measuring nonlocal weak values in linear optics, avoiding the use of second-order interaction. The method is based on the concept of modular values. The paths of two photons, initialized in hyperentangled states, are adopted as the meter with the polarization acting as the system. The modular values are read out through the reconstructed final states of the meter. The weak value of nonlocal observables is given through its connection to the modular value. Comparing the weak values of local and nonlocal observables, we demonstrate the failure of product rules for an entangled system. Our results significantly simplify the task of measuring nonlocal weak values and will play an important role in the application of weak measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.