Abstract

Binary neural networks for object recognition are desirable especially for small and embedded systems because of their arithmetic and memory efficiency coming from the restriction of the bit-depth of network weights and activations. Neural networks in general have a tradeoff between the accuracy and efficiency in choosing a model architecture, and this tradeoff matters more for binary networks because of the limited bit-depth. This paper then examines the performance of binary networks by modifying architecture parameters (depth and width parameters) and reports the best-performing settings for specific datasets. These findings will be useful for designing binary networks for practical uses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.