Abstract

Engineering faster cellulose deconstruction is difficult because it is a complex, cooperative, multi-enzyme process. Here we use experimental evolution to select for populations of Trichoderma citrinoviride that deconstruct up to five-fold more cellulose. Ten replicate populations of T. citrinoviride were selected for growth on filter paper by serial culture. After 125 periods of growth and transfer to fresh media, the filter paper deconstruction increased an average of 2.5 fold. Two populations were examined in more detail. The activity of the secreted cellulase mixtures increased more than two-fold relative to the ancestor and the largest increase was in the extracellular β-glucosidase activity. qPCR showed at least 16-fold more transcribed RNA for egl4 (endoglucanase IV gene), cbh1 (cellobiohydrolase I gene) and bgl1 (extracellular β-glucosidase I gene) in selected populations as compared to the ancestor, and earlier peak expressions of these genes. Deep sequencing shows that the regulatory strategies used to alter cellulase secretion differ in the two strains. The improvements in cellulose deconstruction come from earlier expression of all cellulases and increased relative amount of β-glucosidase, but with small increases in the total secreted protein and therefore little increase in metabolic cost.

Highlights

  • Humans have selected fungal strains to improve fermentations for over a thousand years [1]

  • DNA sequencing of the internal transcribed spacer (ITS, primers are listed in Table 1) identified this strain as Trichoderma citrinoviride [19]

  • Generation sequencing of RNA from both selected and ancestral populations of T. citrinoviride identified different regulatory changes that increased the secretions of cellulases in the two populations (Table 3). We focus on those transcription regulators that were previously shown to affect cellulase secretion in T. reesei

Read more

Summary

Introduction

Humans have selected fungal strains to improve fermentations for over a thousand years [1]. PLOS ONE | DOI:10.1371/journal.pone.0147024 January 28, 2016

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.