Abstract
A novel class of antibiotics based on the antimicrobial properties of immune peptides of multicellular organisms is attracting increasing interest as a major weapon against resistant microbes. It has been claimed that cationic antimicrobial peptides exploit fundamental features of the bacterial cell so that resistance is much less likely to evolve than in the case of conventional antibiotics. Population models of the evolutionary genetics of resistance have cast doubt on this claim. We document the experimental evolution of resistance to a cationic antimicrobial peptide through continued selection in the laboratory. In this selection experiment, 22/24 lineages of Escherichia coli and Pseudomonas fluorescens independently evolved heritable mechanisms of resistance to pexiganan, an analogue of magainin, when propagated in medium supplemented with this antimicrobial peptide for 600-700 generations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.