Abstract

The rise in antimicrobial resistant bacteria have prompted the need for antibiotic alternatives. To address this problem, significant attention has been given to the antimicrobial use and novel applications of copper. As novel applications of antimicrobial copper increase, it is important to investigate how bacteria may adapt to copper over time. Here, we used experimental evolution with re-sequencing (EER-seq) and RNA-sequencing to study the evolution of copper resistance in Escherichia coli. Subsequently, we tested whether copper resistance led to rifampicin, chloramphenicol, bacitracin, and/or sulfonamide resistance. Our results demonstrate that E. coli is capable of rapidly evolving resistance to CuSO4 after 37 days of selection. We also identified multiple de novo mutations and differential gene expression patterns associated with copper, most notably those mutations identified in the cpx gene. Furthermore, we found that the copper resistant bacteria had decreased sensitivity when compared to the ancestors in the presence of chloramphenicol, bacitracin, and sulfonamide. Our data suggest that the selection of copper resistance may inhibit growth in the antimicrobials tested, resulting in evolutionary trade-offs. The results of our study may have important implications as we consider the antimicrobial use of copper and how bacteria may respond to increased use over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.