Abstract

Abstract Casts and molds of soft-bodied organisms in Ediacaran sandstones (“Ediacara-style” fossilization) have played an important role in reconstruction of the emergence and radiation of early complex macroscopic life. However, the preservational processes responsible for the Ediacara fossil record are still vigorously debated. Whereas classic studies proposed fossilization via rapid sulfide mineralization of carcass and matground surfaces, a more recent view posits silica as the key mineral involved in their preservation. We performed experiments in which a variety of soft-bodied organisms were exposed to silica-rich solutions at concentrations considered characteristic of Ediacaran seawater (2 mM). Our results document continuous precipitation of amorphous silica onto the surfaces of these organic tissues under constant and normal marine pH values (7.8). Mineral formation was accompanied by a progressive decrease in the dissolved silica (DSi) concentration of the experimental solution to levels well below amorphous silica saturation. Additionally, we find that the magnitude of silica precipitation is correlated to each organism’s functional-group chemistry, as measured by potentiometric acid-base titrations. We suggest that a wide range of soft-bodied organisms were prone to silicification in Ediacaran marine environments characterized by anactualistically high DSi concentrations. This provides further support for the model that the extraordinary moldic preservation of the Ediacara Biota was promoted by early silica cementation and that this mode of preservation can offer an accurate glimpse into the composition of those early animal ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call