Abstract
The emission of light due to crystal fracture, or triboluminescence (TL), is a phenomenon that has been known for centuries. One of the most common examples of TL is the flash created from chewing wintergreen Lifesavers ®. For the last couple of years, the authors have been measuring fluorescence properties of phosphors like zinc sulfide doped with manganese (ZnS:Mn). Preliminary results indicate that impact energies greater than 16 mJ produced measurable TL from ZnS:Mn. Light was generated from the interaction of a dropped mass and a small number of luminescence centers in the ZnS:Mn powder. To extend this research, a two-stage hypervelocity light gas gun located at NASA's Marshall Space Flight Center (MSFC) was used to evaluate equipment and settings that show promise for hypervelocity TL detection. In these experiments, a projectile was accelerated to approximately 5–6 km/s before striking a ZnS:Mn phosphor-coated aluminum plate. This paper will provide an overview into the first experimental evidence of TL emission from ZnS:Mn due to hypervelocity impact. It is hoped that these results will generate interest in future hypervelocity research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.