Abstract

We experimentally investigate the statistical behavior of a model two-dimensional granular system undergoing stationary sedimentation. Buoyant cylindrical particles are rotated in a liquid-filled drum, thus confined in a harmonic centripetal potential with tunable curvature, which competes with gravity to produce various stationary states: though heterogeneous, the packing fraction of the system can be tuned from fully dispersed to crystallized as the rotation rate is increased. We show that this dynamical system is in mechanical equilibrium in the confining potential and exhibits a thermal-like behavior, where the granular pressure and the packing fraction are related through an equation of state. We obtain an expression of the equation of state allowing us to probe the nature of the hydrodynamic interactions between the particles. This description is valid in the whole range of the physical parameters we investigated and reveals a buoyant energy scale that we interpret as an effective temperature. We finally discuss the behavior of our system at high packing fractions and the relevance of the equation of state to the liquid-solid phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.