Abstract

AbstractA recent numerical study by Rao et al. (J. Fluid Mech., vol. 717, 2013, pp. 1–29) predicted the existence of several previously unobserved linearly unstable three-dimensional modes in the wake of a spinning cylinder in cross-flow. While linear stability analysis suggests that some of these modes exist for relatively limited ranges of Reynolds numbers and rotation rates, this may not be true for fully developed nonlinear wakes. In the current paper, we present the results of water channel experiments on a rotating cylinder in cross-flow, for Reynolds numbers $200\leqslant \mathit{Re}\leqslant 275$ and non-dimensional rotation rates $0\leqslant \alpha \leqslant 2. 5$. Using particle image velocimetry and digitally post-processed hydrogen bubble flow visualizations, we confirm the existence of the predicted modes for the first time experimentally. For instance, for $\mathit{Re}= 275$ and a rotation rate of $\alpha = 1. 7$, we observe a subharmonic mode, mode C, with a spanwise wavelength of ${\lambda }_{z} / d\approx 1. 1$. On increasing the rotation rate, two modes with a wavelength of ${\lambda }_{z} / d\approx 2$ become unstable in rapid succession, termed modes D and E. Mode D grows on a shedding wake, whereas mode E consists of streamwise vortices on an otherwise steady wake. For $\alpha \gt 2. 2$, a short-wavelength mode F appears localized close to the cylinder surface with ${\lambda }_{z} / d\approx 0. 5$, which is presumably a manifestation of centrifugal instability. Unlike the other modes, mode F is a travelling wave with a spanwise frequency of ${\mathit{St}}_{3D} \approx 0. 1$. In addition to these new modes, observations on the one-sided shedding process, known as the ‘second shedding’, are reported for $\alpha = 5. 1$. Despite suggestions from the literature, this process seems to be intrinsically three-dimensional. In summary, our experiments confirm the linear predictions by Rao et al., with very good agreement of wavelengths, symmetries and the phase velocity for the travelling mode. Apart from this, these experiments examine the nonlinear saturated state of these modes and explore how the existence of multiple unstable modes can affect the selected final state. Finally, our results establish that several distinct three-dimensional instabilities exist in a relatively confined area on the $\mathit{Re}$–$\alpha $ parameter map, which could account for their non-detection previously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.