Abstract

In the present study we investigate the CoO/Co3O4 interface in order to determine its intriguing magnetic behavior, which can be utilized for tailoring magnetic properties, enabling spin transport, enhancing magnetic coupling, tuning device functionalities, and realizing miniaturized magnetic devices for various technological applications. We decipher the magnetic properties of the CoO/Co3O4 interface from first principles calculations using Wien2k and probe them experimentally by employing electron energy-loss magnetic chiral dichroism (EMCD), which is an electron-energy loss spectrometry (EELS) based technique in the transmission electron microscope (TEM). Both, theory and experiment, are in perfect agreement and result in a ferromagnetic 2D-electron gas of 5Å thickness directly at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call