Abstract

In this paper, experimental evidence of large complete bandgaps in a kind of light-weighted zig-zag lattice structure (ZLS) is presented. Ultrasonic experiments are conducted on the stainless steel slab designed with ZLS to detect the complete bandgaps. Also, the numerical simulations of the experiments by the finite element method are carried out. For comparison, we conduct the same experiments and numerical simulations on the stainless steel slab with straight lattice structure (SLS). Good agreement is obtained between the experimental and numerical results. The complete bandgaps of ZLS are successfully tested and no complete bandgap is found in SLS. The band structures and vibration modes of both ZLS and SLS are calculated via the finite element method to understand the experimental data. The effects of the geometry parameters of ZLS on the complete bandgaps are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.