Abstract

A joint Taiwanese-U.S. field experiment was conducted in the South China Sea (SCS), entitled the South China Sea Oceanic Processes Experiment (Taiwan)/Non-Linear Internal Waves Initiative (US) (SCOPE/NLIWI), the ocean acoustics portion of which occurred during April 12–22, 2007. The acoustics objective was to quantify the temporal and spatial variability in acoustic propagation characteristics on the continental shelf in the presence of locally-generated and trans-basin nonlinear internal waves (NLIW). Broadband (400 Hz center frequency) m-sequence signals transmitted nearly continuously by a source moored near the seabed were received by vertical line arrays at 3 and 6 km range. The acoustic transect was oriented approximately parallel to the wave fronts of the shoaling trans-basin NLIW's which had crossed the deep basin from their origin in the Luzon Strait. The acoustic propagation variability due to strong vertical and horizontal refraction induced by the very large NLIW's creates an extremely complex acoustic field as a function of time and space. Experimental data and numerical acoustic propagation modeling results are presented to (1) examine and estimate the contribution of internal wave induced horizontal refraction to the received acoustic field; and (2) to quantify the range of propagation angles relative to the internal wave fronts within which strong horizontal refraction occurs and 3D propagation models are required to accurately predict the range- and depth-dependent acoustic propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.