Abstract
Organic photovoltaics (OPVs) with three types of double anode buffer layers (DABLs), i.e., 4.5 nm hole-transport material 4,4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl layer, 1 nm electron-transport material Bphen, and 1 nm typical insulator LiF layer, respectively, deposited onto 10 nm MoO3 layer, were fabricated. All these three DABLs can improve the efficiency of CuPc/C60 based planar heterojunction OPV, especially with about 10% enhancement of short-circuit current (ISC). Based on the external quantum efficiency (EQE) and transient photovoltage (TPV) measurements, a mechanism of depressing harmful exciton dissociation at the MoO3/CuPc interface has been proposed. This harmful dissociation results in exciton loss within the CuPc layer, while a proper ultrathin layer inserted at MoO3/CuPc interface can effectively depress the dissociation and thus improve the total photocurrent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.