Abstract

We report experimental evidence of explosive synchronization in coupled chemo-mechanical systems, namely in mercury beating-heart (MBH) oscillators. Connecting four MBH oscillators in a star network configuration and setting natural frequencies of each oscillator in proportion to the number of its links, a gradual increase of the coupling strength results in an abrupt and irreversible (first-order-like) transition from the system's unordered to ordered phase. On its turn, such a transition indicates the emergence of a bistable regime wherein coexisting states can be experimentally revealed. Finally, we prove how such a regime allows an experimental implementation of magneticlike states of synchronization, by the use of an external signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.