Abstract

We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.