Abstract
Carrier leakage processes are shown experimentally as one of the factors contributing to the temperature sensitivity of InGaAsN quantum well lasers. The utilization of the direct barriers of GaAs0.85P0.15 instead of GaAs, surrounding the InGaAsN quantum-well (QW)-active region, leads to significant suppression of carrier leakage at elevated temperatures of 90–100 °C. Threshold current densities of only 390 and 440 A/cm2 was achieved for InGaAsN QW lasers (Lcav=2000 μm) with GaAs0.85P0.15-direct barriers at temperature of 80 and 90 °C, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.